1. A full wave rectifier supplies d.c. to a load of $1 \mathrm{k} \Omega$. If the a.c. voltage applied to the diode is 200-0-200 volts (rms), calculate: (a) Average d.c. voltage, (b) Average d.c. current, (c) Ripple voltage (rms), neglecting the diode resistance.
2. In full wave rectifier the load resistance is is $1 \mathrm{k} \Omega$. The forward dynamic resistance of each diode is 10Ω. The voltage across half of secondary winding is $220 \sin 200 t$. Find the (a) Peak value of current. (b) Average dc value of current, (c) The rms value of current, (d) The rectification efficiency.
3. A transistor is connected in CE configuration. The collector supply voltage is 10 V and the voltage drop across the 500Ω resistor connected in the collector circuit is 0.6 V . If $\alpha=0.96$, find the (a) collector-emitter voltage, (b) base current and (c) the emitter current.
4. The constant α of a transistor is 0.95 . What would be the change in collector current corresponding to a change of 0.4 mA in the base current in a common-emitter arrangement?
5. A carrier wave of 500 watt is subjected to 100% amplitude modulation. Determine (a) power of modulated wave and (b) power in side bands.
6. A common source FET amplifier has a load resistance $R_{L}=500 \mathrm{k} \Omega$. If the a.c. drain resistance $\left(r_{d}\right)$ and amplification factor (μ) of the FET are $100 k \Omega$ and 24 , respectively. Calculate the voltage gain of amplifier.
7. For a constant drain-to-source voltage if the gate-source voltage is changed from 0 to -2 V the corresponding change in drain current becomes 2 mA . Calculate the transconductance of FET. If the a.c. drain resistance is $100 \mathrm{k} \Omega$, calculate the amplification factor of FET.
8. In a Hartley oscillator the tank coil has two sections of inductances 80 mH and 20 mH . The capacitor has a capacitance 500 pF . Neglecting the mutual inductance of coil find its frequency of oscillation.
9. In a Colpitt oscillator, the inductance and capacitance used in the tuned circuit are 50 mH and 100 pF and 400 pF . Calculate the frequency of oscillations.
10. An OPAMP has a slew rate of $0.8 \mathrm{v} / \mu \mathrm{s}$. What is the maximum amplitude of undistorted sine wave that OPAMP can produce at a frequency of 40 kHz ?. What is the maximum frequency of sine wave that OPAMP can reproduce if the amplitude is 3 V ?
