Problem Sheet- Interference

1. Red light ($\lambda=664 \mathrm{~nm}$ in vacuum) is used in Young's experiment with the slits separated by a distance $\mathrm{d}=1.20 \times 10^{-4} \mathrm{~m}$. The screen in Figure 1 is located at a distance from the slits given by $\mathrm{L}=2.75 \mathrm{~m}$. Find the distance y on the screen between the central bright fringe and the third-order bright fringe.

2. In a Newton's rings experiment the diameter of the 15 th ring was found to be 0.59 cm and that of the 5 th ring is 0.336 cm . If the radius of curvature of the lens is 100 cm , find the wave length of the light.
3. Newton's rings are observed in the reflected light of wave length $5900 \AA$. The diameter of 10th dark ring is 0.5 cm . Find the radius of curvature of the lens used.
4. Two slits separated by a distance of 0.2 mm are illuminated by a monochromatic light of wave length 550 nm . Calculate the fringe width on a screen at a distance of 1 m from the slits.
5. Two coherent sources whose intensity ratio is $36: 1$ produce interference fringes. Deduce the ratio of maximum intensity to minimum intensity.
6. In a Newton's ring experiment, the diameter of the 5th ring is 0.30 cm and diameter of the 15 th ring is 0.62 cm . Find the diameter of the 25 th ring
7. Light of wave length 500 nm forms an interference pattern on a screen at a distance of 2 m from the slit. If 100 fringes are formed within a distance of 5 cm on the screen, find the distance between the slits.
8. Calculate the thickness of air film at the 10th dark ring in a Newton's rings system, viewed normally by a reflected light of wave length 500 nm . The diameter of the 10th dark ring is 2 mm .
9. Light waves of wave length 650 nm and 500 nm produce interference fringes on a screen at a distance of 1 m from a double slit of separation 0.5 mm . Find the least distance of a point from the central maximum where the bright fringe due to both sources coincide.
