## Physics Assignment - Rotational dynamics

Dr. Shinoj V K, U.C. College, Aluva
15/10/2016

1. Tabulate moment of inertia of different object for different location of axis?
2. A $55-\mathrm{kg}$ person riding a bike puts all her weight on each pedal when climbing a hill. The pedals rotate in a circle of radius 17 cm . What is the maximum torque she exerts?
3. A helicopter rotor blade can be considered a long thin rod, as shown in Figure. (a) If each of the three rotor helicopter blades is 3.75 m long and has a mass of 160 kg , calculate the moment of inertia of the three rotor blades about the axis of rotation. (b) How much torque must the motor apply to bring the blades up to a speed of $5.0 \mathrm{rev} / \mathrm{s}$ in 8.0 s ?

4. A person stands, hands at his side, on a platform that is rotating at a rate of $1.30 \mathrm{rev} / \mathrm{s}$. If he raises his arms to a horizontal position, the speed of rotation decreases to $0.80 \mathrm{rev} / \mathrm{s}$. (a) Why? (b) By

what factor has his moment of inertia changed?
5. a) What is the angular momentum of a figure skater spinning at $3.5 \mathrm{rev} / \mathrm{s}$ with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5 m , a radius of 15 cm , and a mass of 55 kg ?
(b) How much torque is required to slow her to a stop in 5.0 s , assuming she does not move her arms?
6. A 4.2-m-diameter merry-go-round is rotating freely with an angular velocity of $0.80 \mathrm{rad} / \mathrm{s}$. Its total moment of inertia is $1760 \mathrm{Kg} \cdot \mathrm{m}^{2}$. Four people standing on the ground, each of mass 65 kg , suddenly step onto the edge of the merry-go-round. What is the angular velocity of the merry-goround now? What if the people were on it initially and then jumped off in a radial direction (relative to the merry-go-round)?
